Blow-up Solutions for Asymptotically Critical Elliptic Equations on Riemannian Manifolds
نویسندگان
چکیده
Given (M, g) a smooth, compact Riemannian n-manifold, we consider equations like ∆gu + hu = u −1−ε, where h is a C-function on M , the exponent 2∗ = 2n/ (n− 2) is critical from the Sobolev viewpoint, and ε is a small real parameter such that ε→ 0. We prove the existence of blowing-up families of positive solutions in the subcritical and supercritical case when the graph of h is distinct at some point from the graph of n−2 4(n−1) Scalg.
منابع مشابه
Sign-changing Bubble Towers for Asymptotically Critical Elliptic Equations on Riemannian Manifolds
Given a smooth compact Riemannian n–manifold (M, g), we consider the equation ∆gu+ hu = |u| ∗−2−ε u, where h is a C–function on M , the exponent 2∗ := 2n/ (n− 2) is the critical Sobolev exponent, and ε is a small positive real parameter such that ε→ 0. We prove the existence of blowing-up families of sign-changing solutions which develop bubble towers at some point where the function h is great...
متن کاملNodal solutions to quasilinear elliptic equations on compact Riemannian manifolds
We show the existence of nodal solutions to perturbed quasilinear elliptic equations with critical Sobolev exponent on compact Riemannian manifolds. A nonexistence result is also given.
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملCompactness of conformal metrics with constant Q-curvature. I
We establish compactness for nonnegative solutions of the fourth order constant Qcurvature equations on smooth compact Riemannian manifolds of dimension ≥ 5. If the Q-curvature equals −1, we prove that all solutions are universally bounded. If the Qcurvature is 1, assuming that Paneitz operator’s kernel is trivial and its Green function is positive, we establish universal energy bounds on manif...
متن کاملMultiplicity of solutions for a fourth order elliptic equation with critical exponent on compact manifolds
This work deals with a perturbation of the so called prescribed scalar Q-curvature type equations on compact Riemannian manifolds; these equations are fourth order elliptic and of critical Sobolev growth. Sufficient conditions are given for having at least two distinct solutions. c © 2006 Elsevier Ltd. All rights reserved.
متن کامل